Dependence of in-situ snow sampling accuracy on sampler cross-section

```
Marko Kaasik (marko.kaasik@ut.ee)
          Kati Anttila (kati.anttila@syke.fi)
    Pavla Dagsson Waldhauserova (pavla@lbhi.is)
          Anders Ginnerup (ang@asiaq.gl)
   Timo Hampinen (timo.hampinen@ely-keskus.fi)
   Leena Leppänen (leena.leppanen@ulapland.fi)
              Yijing Liu (yili@ign.ku.dk)
Andri Gunnarsson (andri.gunnarsson@landsvirkjun.is)
            Kirsty Langley (kal@asiaq.gl)
      Outi Meinander (outi.meinander@fmi.fi)
       Ali Nadir Arslan (ali.nadir.arslan@fmi.fi)
```

Nordic Snow Network

PROJECT ORGANIZATION

Snow water equivalent (SWE)

SWE $[kg/m^2]$ = mass of snow [kg] / area $[m^2]$

- Basically same, as precipitation amount [mm]
- Can be measured once in the end of winter in case of stable snow cover.

Purposes:

- Hydrology
- Hydroenergetics
- Deposition fluxes of pollutants measured in snow water

Why snow samplers' performance intercomparison?

- Measured snow water equivalent: SWE = sample weight/cross-section area
- Samplers of different area and sampling techniques (tube bulk sampler, layerwise)
- How the results from different samplers compare to each other, in terms of SWE (entire snow package)?

Field campaign

- Sodankylä (67.3620°N, 26.6338°E), site of Finnish Meteorological Institute.
- March 24, 2022.
- Snow cover nearly 60 cm deep.
- 10 different samplers from 7 work groups, 4 countries (Greenland, Estonia, Finland, Iceland).

Samplers and samples

Institution	Samlpling equipment	•	Number of cores
Uni. Tartu	Deposition sampler	44	3
FMI	KM	100	8
Arctic Centre	AC white	79	8
Arctic Centre	AC transparent	69	8
FMI	FMI layer-wise (5 cm)	100	1
Uni. Oulu	TH tube	100	10
FMI	Tube	100	8
Greenland Survey	1m federal sampler	11	10
Greenland Survey	Rip cutter	100	1
Uni. Iceland	Federal	11	8

Qualitative physical interpretation

- Sampler's walls have finite thickness.
- In general, the walls of tube sampler, relative to its diameter are thicker for thinner tubes.
- Thus, the snow inside is slightly compressed, creating more friction force to the walls.
- Consequently, snow inside gets partially clogged a part of snow swept aside from direct path, when pushing the sampler down through snow.
- As a result, less snow gets in.
- I seems that the systematic underestimating is negligible for samplers $S \ge 80 \text{ cm}^2$, according to shape of regression curve.

What then?

- A correction function to SWE can be derived.
- Fist guess:

SWE_{correct} =
$$(-5.1 \cdot 10^{-5} \text{ S}^2 + 0.0105 \text{ S} + 0.46)$$
 SWE_{measured} for $100 \text{ cm}^2 > \text{S} > 10 \text{ cm}^2$

 More comparison experiments needed with different sampling principles (bulk, layer-wise etc.), sampler shapes and sizes, snow type (high and low density, hard and soft).

Many thanks to Nordic Snow Network for enabling the intercomparison exercise!

Thank you!